A Sign Preserving Mixed Finite Element Approximation for Contact Problems
نویسنده
چکیده
This paper is concerned with the frictionless unilateral contact problem (i.e., a Signorini problem with the elasticity operator). We consider a mixed finite element method in which the unknowns are the displacement field and the contact pressure. The particularity of the method is that it furnishes a normal displacement field and a contact pressure satisfying the sign conditions of the continuous problem. The a priori error analysis of the method is closely linked with the study of a specific positivity preserving operator of averaging type which differs from the one of Chen and Nochetto. We show that this method is convergent and satisfies the same a priori error estimates as the standard approach in which the approximated contact pressure satisfies only a weak sign condition. Finally we perform some computations to illustrate and compare the sign preserving method with the standard approach.
منابع مشابه
Numerical Modeling of a Dual Variational Inequality of Unilateral Contact Problems Using the Mixed Finite Element Method
We study the dual mixed finite element approximation of unilateral contact problems. Based on the dual mixed variational formulation with three unknowns (stress, displacement and the displacement on the contact boundary), the a priori error estimates have been established for both conforming and nonconforming finite element approximations. A Uzawa type iterative algorithm is developed to solve ...
متن کاملMixed Finite Element Methods of Higher-Order for Model Contact Problems
This paper presents mixed finite element methods of higher-order for a simplified Signorini problem and an idealized frictional problem. The discretization is based on a mixed variational formulation proposed by Haslinger et al. which is extended to higher-order finite elements. To guarantee the unique existence of the solution of the mixed method, a discrete inf-sup condition is proven. Approx...
متن کاملA Posteriori Error Estimates for a Neumann-neumann Domain Decomposition Algorithm Applied to Contact Problems
Contact problems are frequent in structural analysis. They are characterized by inequality constraints such as non-interpenetration conditions, sign condition on the normal constraints, and an active contact, an area that is a priori unknown. Several approaches exist for solving the non linear equations issued from the finite element discretization of frictionless contact problems. In this work...
متن کاملMixed Finite Element Approximations via Interior and Exterior Penalties for Contact Problems in Elasticity
The use of exterior pcnalty formulations of boundary value problems as a basis for the development of finite element methods has gained much popularity in recent times. Such methods frequently lead to fewer unknowns than Illultiplier methods: they sometimes provide regularity that admits the use of numerical schcmes that might not be otherwisc applicable. alld they can produce one-parameter fam...
متن کاملA Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams
In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 21 شماره
صفحات -
تاریخ انتشار 2011